

ETH zürich

SGAligner : 3D Scene Alignment with Scene Graphs

Sayan Deb Sarkar¹, Ondrej Miksik², Marc Pollefeys^{1, 2}, Daniel Barath¹, Iro Armeni¹ ¹Deparment of Computer Science, ETH Zurich ²Microsoft Mixed Reality & Al Lab, Zurich

Problem Definition

Goal Scene alignment using multi-modal 3D scene graphs, for embodied agent operation

Standard Scene Alignment Challenges

- Not robust to point cloud density/ extent
- Deciding if two scenes are non-overlapping
- Extra computation on raw metric space data
- O(N²) complexity for pairwise registration

Key Contributions

- Align 3D scene graphs in-the-wild
- Leverage results for 3D PC registration
- Robust to measurement noise
- Alignment of 3D scenes with changes

SGAligner Overview

- Inspired by works in entity alignment from language domain [1]
- Contrastive learning for interaction between unimodal and joint embedding spaces
- Operating on scene graphs is fast and robust in real-world scenarios
- Perform direct inference, without the need for any metric space data
- Map localization and registration in static + changed environments

3D Scene Graph Alignment

- Accurate matches despite input noise
- Meaningful results even in low spatial overlap

	Experimental Results									
	Key Results									
	 Performs registration on 3D correspondences from node-to-node matches 									
	Less sensitive to PC changes & incorrect matching techniques									
	Better than standard registration methods in low overlap									
	• 3x fas	ter to perfoi	Method	MRR 1	Hits@	1 Î I	lits@3			
	_ 		/A N lapping) (Non-c	– J/A – overlapping)	w/ Ground Truth Scene Graphs					
	Ground trut	N. (Non-overl			EVA [4]	0.867	0.790	(9.938	
					SGAligner	0.950	0.923	(9.974	
				-	w/ Predicted Scene Graphs					
				SGAligner	0.882	0.83	3	0.918		
	ë Car		Table 1. Evaluation on node matching							
					Input Scene	Scene Gr	Scene Graph Alignment Recall			
	SGAligne	N/A N/A (alignment score = 0) (alignment score = 0)			Graphs	R @ top-2	R @ top- 50%		R @ All	
	Overlapping S	cenes No	Ground Truth	0.964	0.948		0.738			
				Predicted	0.963	0.856		0.450		
Table 2. Evaluation on 3D scene graph alig									ignment	
	Method	GeoTR[5]	K=1	K=2	Method	GeoT	R [5] SGA		Aligner	
	CD 🗸	0.02247	0.01677	0.011111	Precision	99.63	99.63		92.03	
	RRE 🗸	RE 1.813 1.425		1.012	Recall	80.98	80.98		90.94	
	RTE \downarrow	2.79	2.88	1.67	F1 Score	89.34		91.48	3	

Table 3. 3D Point Cloud Registration

99.85

98.94

FMR

Table 4. Overlap Check for Point Cloud Registration

139.64

442.50

Conclusion

Time(ms)

- **First method** capable of aligning 3D scene graphs directly on the graph level Alignment directly helps improve downstream tasks (e.g., PC alignment) in terms of accuracy & speed
- Unlock agents to leverage 3D scene graphs for creating maps of the environments, further sharing and using it

99.85

[1] Lin. et. al, Multi-modal Contrastive Representation Learning for Entity Alignment, COLING 2022 [2] Wald. et. al., RIO: 3D Object Instance Re-Localization in Changing Indoor Environments, ICCV 2019 [3] Wald et. al, Learning 3D Semantic Scene Graphs from 3D Indoor Reconstructions, CVPR 2020 [4] Liu. et. al, Visual Pivoting For (Unsupervised) Entity Alignment, AAAI 2021